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PREFACE

-This paper reports on some of the mathematical results that

the author obtained while seeking to refine the Markov chain

models ,used in air ASW tactical analyses in numerous studies

done at CNA. In an effort to take into account the waiting time

in each state prior to transition, a non-Markov process was

postulated. Subsequent investigation showed the process to be

a reformulation of a semi-Markov process (c-.-f., references (a),

(b), and (c)).

In the present case, thn equations for the flow resemble a

multi-dimensional renewal process. The behavior of the system is

described by a probability density which characterizes the pro-

cess at any time t > 0, given that the states of the process were

defined at time t = 0. It is shown in the special steady state

case that the probability distribution yields results which are

equivalent to those previously given (references (a), (b), (c)).

The author wishes to thank Drs. J. Tyson, J. Dram, J. Kadane,

and J. Howe for their valuable suggestions :mn certain aspects of

the problem discussed in this paper.
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INTRODUCTION

In dealing with a stationary Markov process with discrete

state space EI we observe that the transition from state

Ei to state E. (for i / j) does not depend upon the amount of

time the process has spent in state E.. In fact, it follows as
1

a consequence of the Markovian assumption that if at any time the

process is ohse:-ved to be in state E., and in addition, it is ob-

served that the process next makes a transition to state E., the

random variable T. ., denoting the time the process spends in E.

before moving to E., is exponentially distributed. It follows
3

that the probability of making the transition to E. during the infinitesimal

interval [T.j, T.j + At) is just proportional to At, and does not

depend on the amount of time, Ti_, already spent in E..

Systems arise though, in which the probability of transition

from E. to E. does depend on the time already spent in1 3

E.. That is, if it is known that the process has been in E. for

exactly the last - units of time, the probability that a transition

to E. will occur in the next AT units of time depends not only on
I

j and A1 but on T as well. We express this functionally as

w= transition from Ei to E. during process has been in
".wij (-rIA = Probi t r n s t i n  $ (1)

1] \the time interval LT, T + AT) Ei throughout [0,-)

2



With a knowledge of these functions for all i,j plus a description

of the initial states (at time t = 0), we can determine explicitly

the condition of the process at any time t.

DEFINITION OF THE STATES

In order to make our process Markovian, we enlarge our state

space. In essence we consider the time spent in

state as part of the characterization of the state. More formally,

we proceea as follows. Let E!, E2, ... , EN denote the finite num-

ber of states of our original problem. We call these states

elementary from now on. Now define a new set of states as follows.

Each state is characterized by an ordered pair (i, -) where i is

an integer 1 < i N, and T is a non-negative real number. Let S

denote the set of all these states. We call S the modified set of

states. Then for the process to be in the modified state (i,T)

at time t means that the process is in the elementary state E. at

time t and has been there for exactly the last T units of time.

It follows from this that two modified states (k,T) and (j,X)

are the same if and only if k = j and X = T. We can represent

S pictorially by the following diagram consisting of N half

lines.

3



(r, T)

2
I I I

I+

A typical sequence of transitions, starting frcm the elementary

state E,, at time t =0 might look like

3 -

I I ,,-

One iitay think of this process as operating as follows.

There is an "epoch clock" which is initialized at time t = 0

upon the start of the process, say in state E. . This "epoch
0

clock" keeps advancing in t as the process continues. As thie pro-
-N

cess transfers amongst the clementary states the "state

4



clock" is initialized at time * = 0 whenever an elementary state

is entered. The "state clock" keeps track of the time spent, ,

in the elementary state E. until transition, and is reset at

= 0 upon entering a new elementary state, E .
)

Thus, the sequence of transitions illustrated above can be

represented in an "epoch clock" scale by

61
5-

1 3-

2

T a
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th
where represents the amount of time spent in the 3 elementary)

state, and j now refers to the order in which the elementary

states are visited.

We observe now that our process with its modified states is

Markovian. All the previous history needed to make a transition

from the elementary state E. having been there 7 units of time is1

incorporated into the modified s.ate 'i,-).

In general, given that the process is in (i,T. at time t,

the diagram below indicates the possible transitions the process

.mav make by time t + tt.

~J.0)

(2, o

A

(N 0

°-...

i N.

N(.

NN o

epoch time t
ir ~t +1 t

6
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From equation (1), we see that the probability of transi-

tion from (i,T) to (j,O) is given by wij (T)Ai. Furthermore, we

assume that the probabilizy of transition from (i,T) to

(i, T + AT) is given by

N

w.. (T)A 1 - w. (T) Tw (2)
jijj=]

j3 i

THE GENERALIZED CHAPMAN-KOLMOGOROV EQUATIONS FOR THE SEMI-MARKOV
PROCESS

In accordance with the definition of the set of modified

states S, let (X,T) be a 2-dimensional random variable, where
t

X is discrete and T is continuous. In pF :ticular, X takes on

the values 1, 2, ..., N and T is a non- -gative real number.

For a given epoch time t > 0, we wish to determine the probability

density function for (X,T) . We denote it by 0. (T,t) for

1 ! j -g N, where

.(T, t)7-Prob X = T T < T*ATj} (3)

7



Now consider the possible (single) transitions during a time

interval tt, t + At) for the cases (a) T > o and (b) = 0

(a) ' > 0: If at time t + At, (X, T) = (j, + At),

then at time t we must have had that

(X, T)t = (j, r) (for sufficiently small Ai).

Thus we have

(+ AL, t 4. At) = .',t) 1 w jk (')Atl + o( At)

which yields the partial differential equation

B,,( ,t ¢ (T , t (4)
+ - - w(T)oj(T, t)

where

w i(T) = _ Wjk(). 5

kj



(b) T = 0: This is the case in which the process just

entered the elementary state E. during theJ

time interval, It, t + At). So if at time

t, (X.T) = (i,s) for some i and s, then att

time t + t, (X,T) = (jO). Thus the
t+At

probability that (X,T)t has the value (j,O)

during the time interval [t, t + tt) is

given by

0.(0,t)At + o(At).

On the other hand since the transition to (j,0) can arise

from any (i,s) X (j,0), we have for the probability that

(X.T) (jo) during It, t + At) the relation(XTt

t +At (s, t) wi (s) Atds .
ilj

Equating the last two expressions and letting At - 0 we

get for 1 !g j : N and t > 0

t
0j.(0,t) r 0i(s,t)w (s)ds. (6)

i5j
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Actually this equation is incomplete. It provides no con-

tribution for an initial distribution (at t = 0) for the process.

So let 0. denote the probability that the process is initial~y
)

in the elementary state E.; that is,J

0I = Prob I= j 't = 01

N

It follows that 0 0. 1. Now let n(t) be the function

j=1

(1, t = 0
0, t0

The complete expression for 0. (O,t) becomes

t
A0(Ot) = 7 0 (s,t)w (s)ds + 0.n(t) (7)0 iij

for all t 0.

It can be shown that the solution to equation (4) is

-w. ()
0.(T,t) = H.(t - T)e ] (8)
J 1

10



for 0 < T st, where

,'1*
W1(rT (9)W.(T) w.(s)ds

and H. is an arbitrary differentiable function. We choose H.) )

so that it is consistant with equation (6). In particular we

define

H. (t) = 0.(O,t). (10)J

We can interpret H. (t) as the probability density that the3

process just enters E. at time t.3

THE WAITING TIME DISTRIBUTIONS
-W_ (T)

Let us now examine the term e in equation (6). If T.

is a random variable which denotes the time the process waits in

state E. before leaving for some other state, we define
3

P'(-) = Prob fTj < }.

It



We assume that P. (0) 0. and that the process must eventually
J

leave state E.. Hence lim P. (t) = 1. Then since w. (r)A is the
St-M

probability that the process is in E. during the interval)

[T, T + AT), conditioned on being in E. during O,T), we find

Prob :5 T. < T + 9

3 -Prob {Tj

P.( I + T) - P(T

1 - P (T)

If the distribution function P. (i) is continuous, then we get upon

letting A! - 0,

w. (T)d
T  P 

(1)

J 1 P. (- )

)

Solving equation (11) for P. () we haveJ

-w. ((

where W. () is given by equation (9).

12



-w. (i)
Thus e represents the probability that the process upon

entering state E. remains there for at least T units of time.3

Furthermore,

-W. (T)
P. (T) = w. (,r)e 3 (13)J 3

is the probability density for the random variable T. (,-here the

prime denotes differentiation).

Upon substitution (of equations (8) and (10)) into equation (7) we get

t -W.(s)
H. (t) = H. (t - s)wij (s)e ds + 0r(t) (14)

i J 0 ) J
i"'j

for 1 j 5 N. Setting

-W. (s)qij(s) w wi(s e z(5

for 1 < i, j N, i y j and substituting into equation (14) we

have

t

H.(t) = r Hi(t - s)qi (s)ds + 0jWt) (16)

13
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Now consider the term q ij (s). Then

qij (s)As wij(s)L1 - P.(s)l As

s s+s X=iX=i
Prb ~ ,X v = prb'v~Prob and X = i or j Probr O ! v < O s v <s i

for s < r < s +As

= Prob and X = ior j (
(for s < r < s + As)

= probability that the process makes a direct transition

from E.. to E. during the interval [s, s + As). So1 3

qi = r qij (slds (17)
at ti 0 O,

is the probability that the process, if in E. at time s = 0,

eventually jumps to E. Since we require that the process must

eventually leave Ei for some other state, it follows that

qii = 0. We note that

14



jli j~i 0

z-W.(x)

0

= 1.

If we denote by Q the matrix of trar'sition probabilities qj

r

for 1 i, j N, then the set of elementary states E~) along
i=1

with the stochastic matrix Q define a Markov chain. Henceforth

we assume that this is an irreducible chain.

Now suppose T . denotes the random variable representing the
1)

time the process waits in Ei before leaving for E. (j i). (Of

course this assumes prior knowledge of a transition to E..) Then

the conditional probability density for Tij, covnditioned on the

process making a transition from E. to E. is given by-. )

tij(x) = ( x (x) (18)

rr 3

for1 i j:5Nthn hese ofelmetay taes E15on



We make the following assumption concerning this density:

the mean time t.. defined by

=j f xtij(x)dx (19)

is finite.

The following relationship is evident from the waiting

time densities of equation (18). If t. denotes the mean waiting

time in state E., then since by definition1

J'xdPi(x)
0

and s ince

-Wi(x)
dP. (X) = W..( ~ dx

jAi

we have

-W. (x)
x ) w(x)e dx

CO (20l
; " 1o xa .(x; dx

[vi -

q6tii <

16



We note here that the transition probabilities qij and the

conditional waiting time distributions t. (x) are exactly theij

quantities postulated in references (c), (d), and (e). It follows

from this that the transition mechanism given by equation (1) is

equivalent to that given in the references just cited. For

a transition matrix Q = (qij) and conditional waiting time den-

sities t. (x), there corresponds a unique w. (x). In fact

q..t.U !x)
wi (x) = 1J

1 - P (x,

Conversely, the transition function w. (x) uniquely deter-

mines the quantities qij and tij (x) as we have seen above.

SOLUTION OF THE EQUATIONS FOR THE SEMI-MARYFV PROCESS

Equations (8) and (16) are sufficient to determine each

. (d' t). Standard theorems of differential equations guarantee

the existence and uniqueness of H. t). One of these theorems,

the Picard theorem of successive approximations can be applied to

develop an algorithm for the computation of H (t).*

* Besides formulating an algorithm for solution, we introduce the

approximation procedure at this point in order to display equation

(23) (to follow). This is needed in a later section.

17



To fa.-ilitate this, we put equation (16) in vector form.

Set

:( ) =[ .( t . 2( ., . t~

... ... Z' W:D

23(t) - -

0i_") o..( )qg t - - - 9~(z

-I

Then

()= Jo i(' 
- s)Qts)ds,' (p1)

18



- ... / - - .. . .H _ -_ . , , ,, .- ,Y ff2 _ W'- '- ,

We pcroceed towards the solution as follows. Let LO, ti be

the interval over which we want to determine H. Let

P = t0 0, tl) t 2' ' tn-l' t =tn

be a partition of (0, t1 with norm A. What we shall do is to

generate a sequence of functions I eac H(k)I ac being defined

on the points of the partition P. For sufficiently small A as

k - w, the sequence (H(k)} will converge uniformly to H on

(0, t.1. Initially let H ( 0 ) (tj) = 0 for all j = 0, 1, 2, ... , n.

Next set

L.

H(1)(t) H(O)(t - s)Q(s)ds +tj(t.)¢.
03

Thus

= JO Q(s)ds +t(t.).. (22)

0 1

19
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Similarly set

t.

H (k+)(t; t.H (k)(t - s)Q(s)ds + (23)
0

(k)

Phus from equation (23) if we know Q(s) and H (s) at all points

of the partition P, H (k + l ) is fully determined on P. The bounded-(k)

ness of Q(s) insures that H converges (uniquely) to H.

STEADY STATE ANALYSIS

Define

tt

0 (j ( ,t)d- + n,(t)0.. (24)

In appendix B we verify that 0 .(T, t) is an honest probability
3

density for the joint random variables (X, T) . Thus y (t) is

the marginal distribution (as a function of t) for the random

variable X. In particular

T W= Prob IXt = .

We wish to study thL behavior of (t) at equilibrium. That

is, we are interested in the limit

20



if it exists. Since

t -W. (()

4.(t) = H (t- )e dr + '(t)0(
3 0 3

we note that this is a convolution integral and proceed to apply

the method of Laplace transforms. Denoting the Laplace trans-

form of a function f(x) by f*(s), where

f*(s) = eSXf(x)dx

0

for real valued s, s z 0, and using the convolution theorem of

Laplace transforms, equation (25) yields

w *(s) H (s)E* (s) (26)

3 31

where E*(s) is the Laplace transform of e
I

We now employ the well known Tauberian limit theorem which says

lir f(x) = lim sf*(.3)

whenever one of the limits exists. Applying this to equation

(26) we have

-.Ur Is-) (27)

21



in order to compute Jim sH.(s) we go back to equation (21). Taking Laplaces-d

transforms there (of the vector quantities) we get

H = H-(s)Q(s) (28)

Mu,- ,ltlng by s and taking limits as s "-d yields

Jim sE*(S)] [im si*( )Ji QX(s)j(9

Since each element of Q*(s) is some qi (s), where

q *(S) co -st

ij (s) = 0 e qij(x)dx;

it follows that

lim q (s) = ij (x)dx = qij

from equa.'on (17). Thus

lim (s)= Q.

22



From the theory of Markov chaLns we know that there exists a vector

T7.., 2' NI

unique up to some positive factor such that

The vector is just zhe limiting or steady state probabilities for the Markov

chain defined by the stochastic matrix Q. Thus we must have

= lim sH (s) (30)
s-Q

up to some positive factor.

lt now remains to evaluate lim B*(s). Since
s-O

-W M
e 1 - Pjt

Then

4 (s) = - z)

23



'I

c dP.(t,) =sP(s) P- 0)
0

1h-Tis in xhe .x.e.s.on for Ft(s) (noting that P.(O) 0) we get

- StdPt) (31)

, - .ere as s - is indeterminate, so we use L' Hospital's rle. This

2AmE~s)= - d- e~ S t 1)
ds 1

= f teS(t)
"0

0

. (32)

Thus ne limit yields the mean time spent in state E. prior to transition. If t

and T.* are placed in equation (27) wt a- left with Y. -T.t. up to a constant

24



factor. Normalizing we have

(33)
N _

jj

Thus the steady state probability of being in E. is essentially

the probability r of being in E. of the imbedded Markov chain) J

given by Q but weighted by the expected waiting times in each

state. Furthermore we note the independence of y . with respect3

to the initial condition 0. It is also evident that y. is inde-
I

pendent of any of the specific waiting time distributions. We

need only know the mean waiting time t.,i

We can also calculate the steady state value of 0j (.,t),

that is,

25
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M ..........

By equation (8) we get

-w (()
- (jT)= !rn H,(c - )e '

(up to a constant factor). Upon normalizing we get

-w (7)

rr .e
(r) = (34)

iI

Thus at sr.eady state the probability of being in E.for exactly theJ

last - units of time is just the equilibrium probability ,. of
J

being in E. of the imbedded Markov chain times the probabilityJ

of remaining in E. for at least T units of time.

We note here that since

-W.(T)
e dT=t.,

0

26



then

r J0.(T)dT
j JO j

as we should expect.

FIRST PASSAGE AND RECURRENCE DISTRIBUTIONS

Let r.. (t) be the probability density function for first

passage measured from the moment the process enters E. until it1

first enters E.. In particular then, rii (t) is the probability3 -3

density for the recurrence time of state Ei. We will show that

r. .(t) : / k'j t.(s)r.(t - s)ds + a'j(t). (35)
0

Indeed, there are two ways tb.t the process can first arrive at

E. at time t, having entered E. at t = 0. Either the process re-

mained in E. for a time s, and left for Ek whence it took t - s

units of time to first get to E. or the process remained in E.3 1

for the whole time t at which point it jumped to E.. The integral3

in equation (35) reflects the former possibility. Since the condi--

tional waiting time in E. before transfer to Ek is independent of

th-ea first passage time from Ek to E. i ne integral in equation j35)

27
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"

is the probability density function rcr the time t of first

passage via the route E. to Ek to E.. Since we carn make all of

these transitions (through Ek) we must weight them according to

their eventual likelihood of occurrence, namely the qij's. The

latter possibility foi first passage to E. at time t is representedJ

by the unconditional probability qij (t).

The expected first passage time r.. can be shown to satisfy

the following equation for all 1 5 i, j < N.

kr/J k qij t_. (36)

An exact derivation of equation (36) is presented in appendix A.

At this point we give a heuristic proof of equation (36).

Supp'ose the process enters E. at time t = 0. At this point

a choice is made as to what elementary state the process jumps

to next. Suppose the successor is Ek where -k X j. Then the pro-

cess waits in E'. for an expected time tik before going to E k"

Since the waiting time in E. is independent of the first pas-

sage time from Ek to Ej, the expected time from entry to E, until

first entry to E. is t. + rk. But the choice of Ek is deter-
J .k kj

mired by the probabilities qik So we weight the times t. + rkj

28
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accordingly as in the first term on the r.h.s. of equation (38).

The last term of equation (36) results from the choice to wait

in E. and go to E. directly without passing through any inter-:1

vening elementary states Ek - This waiting time, tij is also

weighed accordingly.

Substituting ti for I qijtik, we have from equat.on (36)

that ki

rij =L/ qikrki + t;"
I kj (37)

We are primarily interested ir, obtaining the expected recur-

rence time r.. for 1 s i N. This is simplified by putting11

equation (37) in matrix notation. Letting R denote the matrix

of terms r.. and T the diagonal matrix of the t. 's, we get

R -( RD T

where RD is obtained from R by replacing the off diagonal elements

DDby zero. Letting R0 = R - RD we get

pD -(Q -I)Ro + T (38)

29



I

Now multiply both sides of equation (38) by r, the vector of

steady state probabilities for the imabedded Marko, process, and

we get riRD 
= eIT. Then solving for r.. we have

N
_ - (39)

k=k

3

30
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APPE WDIX A

DIERIVATION OF TDIE 1UZPECTED FTRST PASSAGE TIMP-ES

By definition.

"ii t Lj t (t)dt

Then irozn equation (377)

ti C q~ j t~k(s )r ki( -~s at + Ca. .~ j(tQdt

q r sr (t s)dt sj +

ik !~)k ij1~

~ q..(s + x)r .(x)dxl ds + q..t

(where we have made the change of variables x =t -

A-1

F.77



qs + T. ds 1 0 .
k/j kjd ,

lk J, ~ [st;ljs) + r kjtk s) ds + a .. t..

k~j

7 '

us' nq eq-watio (19) toevaluate i-k

A-2
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APPENDIX B

PROOF THAT 0. (,, t) IS A PROBABILITY DENSITY
3

In order to show that 0.(-r, t) is an "honest" joint proba-
3

bility density for the random variable (X, T) , we must prove

t 0

for all j = 1, 2, ... , N and al]. T, 0 . < t, and

N t N
0 ((ii) 0 + i.t

j= j=l

To prove (i) we consider equation (23) for any fixed t = t..

We first show that the vector H(t) 0, i.e., has all non-nega-

tive components. Now by definition of the matrix Q(s), each

entry is non-negative, hence Q(s) >_ 0. Since

H(O)(t) = 0 0

(1)
then by equation (22), H (t) 0. Similarly from equation (23)

we see that H ( k ) (t) z 0 implies that H(k + l ) (t) 1 0.

V ........



It then follows from the uniform convergence of H(k )  to

H on (O,t] that H(t) : 0. Since each H. (t) -0 then

3 3

0 j(T, t) = Hji(t - T)e 0 .

For (ii) we define the function

t
j ( (r,t)dT + rn(t)j..

Then substitution for 0j(T,t) from equation (8) and (10),we get

=At - 1(t i)

0 (s v)w. (s)ds +v) + 0

-~~~ 0 O i(S, v)W..(s)dsj dv +Tj(t)O..
0 0 -

B,-2



ITaking derivatives with respect to t yields

'i'~(t) -.- J - ~ V Oi(s, V)w j(s)dr-I dv

i/j

Alk

L+ o

We can introduce the term rT(v)qj into the first integral (with

respect to v) without changing its value. Then

ij. ) = o W0 j~t V) C. Oj s ' s~ s + 1

,Pt

{ Oi~s $.s ~r(s)dsd

B-3
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w,,- replace the termi ;ri brackets by H.(v) we are left ith

-W .(t--v) r t
= -J . Vv)e H.(v)clv +- ,)j (s, t)W ,(s)ds

30 -~0

- ~ o - 3)- ,)d + Cs, OW. .(s)ds.I0
lakirnz a cha-e of-: variables in tbe irtintegral we get

3 (, -Lw(sd + I0(s, OW (s)ds.

ij

B -4



~~~~~~~- - --- -- - - - - - - -

Summing over all states j we have

N N

.2( 0. (s, t)w.(s)ds + O(s, t)W(s)ds

j=l 0 0 -i ij 0

A U C.(s, t)W S)ds 0(s, t),- (s)ds

I

=0.

Observe that

NU

J=l j=l

B-5
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hence

/

j=l

for a-! t 0 0. But this is just the statemenc (ii) we wished

to prove.
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